857 research outputs found

    Low-power high-performance SAR ADC with redundancy and digital background calibration

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (p. 195-199).As technology scales, the improved speed and energy eciency make the successive- approximation-register (SAR) architecture an attractive alternative for applications that require high-speed and high-accuracy analog-to-digital converters (ADCs). In SAR ADCs, the key linearity and speed limiting factors are capacitor mismatch and incomplete digital-to-analog converter (DAC)/reference voltage settling. In this the- sis, a sub-radix-2 SAR ADC is presented with several new contributions. The main contributions include investigation of using digital error correction (redundancy) in SAR ADCs for dynamic error correction and speed improvement, development of two new calibration algorithms to digitally correct for manufacturing mismatches, design of new architecture to incorporate redundancy within the architecture itself while achieving 94% better energy eciency compared to conventional switching algorithm, development of a new capacitor DAC structure to improve the SNR by four times with improved matching, joint design of the analog and digital circuits to create an asynchronous platform in order to reach the targeted performance, and analysis of key circuit blocks to enable the design to meet noise, power and timing requirements. The design is fabricated in standard 1P9M 65nm CMOS technology with 1.2V supply. The active die area is 0.083mm² with full rail-to-rail input swing of 2.4V p-p . A 67.4dB SNDR, 78.1dB SFDR, +1.0/-0.9 LSB₁₂ INL and +0.5/-0.7 LSB₁₂ DNL are achieved at 50MS/s at Nyquist rate. The total power consumption, including the estimated calibration and reference power, is 2.1mW, corresponding to 21.9fJ/conv.- step FoM. This ADC achieves the best FoM of any ADCs with greater than 10b ENOB and 10MS/s sampling rate.by Albert Hsu Ting Chang.Ph.D

    A test structure for the measurement and characterization of layout-induced transistor variation

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (p. 131-139).Transistor scaling has enabled us to design circuits with higher performance, lower cost, and higher density; billions of transistors can now be integrated onto a single die. However, this trend also magnifies the significance of device variability. In this thesis, we focus on the study of layout-induced systematic variation. Specifically, we investigate how pattern densities can affect transistor behavior. Two pattern densities are chosen in our design: polysilicon density and shallow-trench isolation (STI) density. A test structure is designed to study the systematic spatial dependency between transistors in order to determine the impact of different variation sources on transistor characteristics and understand the radius of influence that defines the neighborhood of shapes which play a part in determining the transistor characteristics. A more accurate transistor model based on surrounding layout details can be built using these results. The test structure is divided into six blocks, each having a different polysilicon density or STI density. A rapid change of pattern density between blocks is designed to emulate a step response for future modeling. The two pattern densities are chosen to reflect the introduction of new process technologies, such as strain engineering and rapid thermal annealing. The test structure is designed to have more than 260K devices under test (DUT). In addition to the changes in pattern density, the impact of transistor sizing, number of polysilicon fingers, finger spacing, and active area are also explored and studied in this thesis. Two different test circuits are designed to perform the measurement.(cont.) The first test circuit is designed to work with of-chip wafer probe testing equipment; the second test circuit is designed to have on-chip current measurement capabilities using a high dynamic range analog-to-digital converter (ADC). The ADC has a dynamic range of over four orders of magnitude to measure currents from 50nA to 1mA. The test chip also implements a hierarchical design with a minimum amount of peripheral circuitry, so that most of the chip area is dedicated for the transistors under test.by Albert Hsu Ting Chang.S.M

    Acute kidney injury in patients treated with immune checkpoint inhibitors

    Get PDF
    Background: Immune checkpoint inhibitor-associated acute kidney injury (ICPi-AKI) has emerged as an important toxicity among patients with cancer. Methods: We collected data on 429 patients with ICPi-AKI and 429 control patients who received ICPis contemporaneously but who did not develop ICPi-AKI from 30 sites in 10 countries. Multivariable logistic regression was used to identify predictors of ICPi-AKI and its recovery. A multivariable Cox model was used to estimate the effect of ICPi rechallenge versus no rechallenge on survival following ICPi-AKI. Results: ICPi-AKI occurred at a median of 16 weeks (IQR 8-32) following ICPi initiation. Lower baseline estimated glomerular filtration rate, proton pump inhibitor (PPI) use, and extrarenal immune-related adverse events (irAEs) were each associated with a higher risk of ICPi-AKI. Acute tubulointerstitial nephritis was the most common lesion on kidney biopsy (125/151 biopsied patients [82.7%]). Renal recovery occurred in 276 patients (64.3%) at a median of 7 weeks (IQR 3-10) following ICPi-AKI. Treatment with corticosteroids within 14 days following ICPi-AKI diagnosis was associated with higher odds of renal recovery (adjusted OR 2.64; 95% CI 1.58 to 4.41). Among patients treated with corticosteroids, early initiation of corticosteroids (within 3 days of ICPi-AKI) was associated with a higher odds of renal recovery compared with later initiation (more than 3 days following ICPi-AKI) (adjusted OR 2.09; 95% CI 1.16 to 3.79). Of 121 patients rechallenged, 20 (16.5%) developed recurrent ICPi-AKI. There was no difference in survival among patients rechallenged versus those not rechallenged following ICPi-AKI. Conclusions: Patients who developed ICPi-AKI were more likely to have impaired renal function at baseline, use a PPI, and have extrarenal irAEs. Two-thirds of patients had renal recovery following ICPi-AKI. Treatment with corticosteroids was associated with improved renal recovery

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    An embedding technique to determine ττ backgrounds in proton-proton collision data

    Get PDF
    An embedding technique is presented to estimate standard model tau tau backgrounds from data with minimal simulation input. In the data, the muons are removed from reconstructed mu mu events and replaced with simulated tau leptons with the same kinematic properties. In this way, a set of hybrid events is obtained that does not rely on simulation except for the decay of the tau leptons. The challenges in describing the underlying event or the production of associated jets in the simulation are avoided. The technique described in this paper was developed for CMS. Its validation and the inherent uncertainties are also discussed. The demonstration of the performance of the technique is based on a sample of proton-proton collisions collected by CMS in 2017 at root s = 13 TeV corresponding to an integrated luminosity of 41.5 fb(-1).Peer reviewe

    Measurement of t(t)over-bar normalised multi-differential cross sections in pp collisions at root s=13 TeV, and simultaneous determination of the strong coupling strength, top quark pole mass, and parton distribution functions

    Get PDF
    Peer reviewe

    Bose-Einstein correlations of charged hadrons in proton-proton collisions at s\sqrt s = 13 TeV

    Get PDF
    Bose-Einstein correlations of charged hadrons are measured over a broad multiplicity range, from a few particles up to about 250 reconstructed charged hadrons in proton-proton collisions at s \sqrt{s} = 13 TeV. The results are based on data collected using the CMS detector at the LHC during runs with a special low-pileup configuration. Three analysis techniques with different degrees of dependence on simulations are used to remove the non-Bose-Einstein background from the correlation functions. All three methods give consistent results. The measured lengths of homogeneity are studied as functions of particle multiplicity as well as average pair transverse momentum and mass. The results are compared with data from both CMS and ATLAS at s \sqrt{s} = 7 TeV, as well as with theoretical predictions.[graphic not available: see fulltext]Bose-Einstein correlations of charged hadrons are measured over a broad multiplicity range, from a few particles up to about 250 reconstructed charged hadrons in proton-proton collisions at s=\sqrt{s} = 13 TeV. The results are based on data collected using the CMS detector at the LHC during runs with a special low-pileup configuration. Three analysis techniques with different degrees of dependence on simulations are used to remove the non-Bose-Einstein background from the correlation functions. All three methods give consistent results. The measured lengths of homogeneity are studied as functions of particle multiplicity as well as average pair transverse momentum and mass. The results are compared with data from both CMS and ATLAS at s=\sqrt{s} = 7 TeV, as well as with theoretical predictions
    corecore